Optimal Control over the Process of Innovative Product Diffusion: The Case of Sony Corporation

Abstract

The article deals with the process of distribution of an innovative product using the Bass model. Numerical characteristics of the generalized Bass model are described. The function of external influence is suggested to be approximated by means of a regression equation with respect to the price function of the product under investigation, which is also a control function. The control process is based on a mathematical apparatus under the Pontryagin maximum principle. An algorithm for determining the optimal price of products in order to obtain the maximum balance profit of the corporation is given. Selected numerical results of the corporate strategy implementation for conquering the market in 2017-2020 are offered.

Bibliography

1. Akhmetova, M. (2017). Socio-Economic Environment as the Basis for Innovation Economy. Montenegrin Journal of Economics, 13(2), 175-183.

2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T.

3. Bagozzi, R.P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254.

4. Bass, F. M. (1969). A New Product Growth Model for Consumer Durables. Management Science, 15(5), 215–227, https://doi.org/10.1287/mnsc.15.5.215.

5. Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass Model Fits Without Decision Variables. Marketing Science, 13(3), 203–223, https://doi.org/10.1287/mksc.13.3.203.

6. Bemmaor, A. (1994). Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity. Research Traditions in Marketing, ed. Gilles Laurent, Gary L. Lilien, and Bernard Pras, 201–229. Boston: Kluwer.

7. Bemmaor, A., & Lee.Y. (2002). The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates. Marketing Science, 21(2), 209–220, https://doi.org/10.1287/mksc.21.2.209.151.

8. Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 211-218.

9. Boehner, R., & Gold, S. (2012). Modeling the Impact of Marketing Mix on the Diffusion of Innovation in the Generalized Bass Model of Firm Demand. Developments in Business Simulation and Experiential Learning, 39, 75–91.

10. Boswijk, H. P., & Franses, P. H. (2005). On the econometrics of the Bass diffusion model. Journal of Business & Economic Statistics, 23(3), 255–268, http://dx.doi.org/10.1198/073500104000000604.

11. Cieślik, A., & Michałek, J. (2017). Innovation Forms and Firm Export Performance: Empirical Evidence from ECA Countries. Entrepreneurial Business and Economics Review, 5(2), 85-99. doi: https://doi.org/10.15678/EBER.2017.050205

12. Chandrasekaran, D., & Tellis, G. J. (2007). A Critical Review of Marketing Research on Diffusion of New Products. In Naresh K. Malhotra, Review of Marketing Research, 3, Armonk: M.E. Sharpe, 39–80.

13. Chatterjee, R., & Eliashberg, J. (1990). The Innovation Diffusion Process in a Heterogeneous Population: A Micro Modeling Approach. Management Science, 36(4), 1057–1079. https://doi.org/10.1287/mnsc.36.9.1057.

14. Chen, L., Gillenson, M., & Sherrrell, D. (2002). Enticing online consumers: An extended technology acceptance perspective. Information and Management, 39(8), 705-719, https://doi.org/10.1016/S0378-7206(01)00127-6.

15. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340, https://doi.org/10.2307/249008.

16. Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989).User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003, https://doi.org/10.1287/mnsc.35.8.982 .

17. Deleersnyder, B., Dekimpe, M., Sarvary, M., & Parker, P. (2004).Weathering Tight Economic Cycles: The Sales Evolution of Consumer Durables over the Business Cycle. Quantitative Marketing and Economics, 2(4), 347–383. https://doi.org/10.1007/s11129-004-013

18. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of th eAmerican Statistical Association, 74(366), 427–431, http://dx.doi.org/10.1080/01621459.1979.10482531.

19. Easingwood, C.J., Mahajan, V., & Muher, E. (1983). A non-uniform influence innovation diffusion model of new product acceptance. Marketing Science, 2(3), 273-295. https://doi.org/10.1287/mksc.2.3.273.

20. Franses, P.H. (2009). Forecasting Sales. Econometric Institute. Erasmus University. Rotterdam. Econometric Institute, Report 2009-29.

21. Fruchter, G. E., & Vanden Bulte, C. (2011). Why the Generalized Bass Model leads to odd optimal advertising policies.International Journal of Researchin Marketing, 28(3), 218–230. https://doi.org/10.1016/j.ijresmar.2011.03.005.

22. Garber, T., Goldenberg, J., Libai, B., & Muller, E. (2004). From Density to Destiny: Using Spatial Dimension of Sales Data for Early Prediction of New Product Success. Marketing Science, 23(3), 419–428, https://doi.org/10.1287/mksc.1040.0051.

23. Gerpott, T. J. (2005). Strategisches Technologie- und Innovationsmanagement, 2. Aufl., Stuttgart.

24. Golder, P. N., & Tellis, G. J. (1998). Beyond Diffusion: An Affordability Model of the Growth of New Consumer Durables, Journal of Forecasting, 17(3/4), 259–280.

25. Golder, P. N., & Tellis, G. J. (2004). Growing, Growing, Gone: Cascades, Diffusion, and Turning Points of the Product Life Cycle. Marketing Science, 23(2), 207–218. https://doi.org/10.1287/mksc.1040.0057.

26. Granger, C. W. J. (1969).Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424–438, https://doi.org/10.2307/1912791.

27. Ha, C. L. (1998). The theory of reasoned action applied to brand loyalty. Journal of Product & Brand Management, 7(1), 51–61: https://doi.org/10.1108/10610429810209737.

28. Horsky, D. (1990). A Diffusion Model Incorporating Product Benefits, Price, Income and Information. Marketing Science, 9, 342–365. https://doi.org/10.1287/mksc.9.4.342.

29. Irvine, J., & Martin, B. R. (1984). Foresight in Science – Picking the Winners, London.

30. Ivanová, E., & Čepel, M. (2018). The Impact of Innovation Performance on the Competitiveness of the Visegrad 4 Conutries. Journal of Competitiveness, 10(1), 54-72.

31. Kiwanuka, A. (2015). Acceptance Process: The Missing Link between UTAUT and Diffusion of Innovation Theory. American Journal of Information Systems, 3(2), 40-44.

32. Kotsemir, M., & Meissner, D. (2013). Conceptualizing the innovation process-trends and outlook. Basic research program, Working papers, Series: science, technology and innovation. WP BPR 10/STI/2013. http://dx.doi.org/10.2139/ssrn.2249782.

33. Kozlovskyi, S. et al. (2018). Modeling and Forecasting the Level of State Stimulation of Agricultural Production in Ukraine Based on the Theory of Fuzzy Logic. Montenegrin Journal of Economics, 14(3), 037-053.

34. Lee, Y.H., Hsieh, Y.C., and Hsu, C.N. (2011). Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems.Educational Technology & Society, 14(4), 124-137.

35. Lowry, P. B., Gaskin, J.,Twyman, N. W., Hammer, B., & Roberts, T. L. (2013). Taking fun and games seriously: Proposing the hedonic-motivation system adoption model (HMSAM). Journal of the Association for Information Systems (JAIS), 14 (11), 617–671.

36. Marinova, D., & Phillimore J. (2003). Models of innovation. In Shavinina L.V. (Ed.).The International Handbook on Innovation. Oxford. Elsevier, 44–53.

37. Olefirenko, О. (2016). Methodic tools to optimize marketing expenses of the innovatively active industrial enterprises in Ukraine. Problems and Perspectives in Management, 14(1). https://doi.org/10.21511/ppm.14(1).2016.05.

38. Oren, S., & Schwartz, R. (1988). Diffusion of New Products in Risk-Sensitive Markets. Journal of Forecasting, 7(4), 231–287. https://doi.org/10.1002/for.3980070407.

39. Pandey, S., & Srivastava, S. (2016). Antecedents of Customer Purchase Intention. Journal of Business and Management, 18(10), 55-82. https://doi.org/10.9790/487X-1810035582.

40. Pontryagin, L.S, Boltyanskii, V.G, Gamkrelidze, R.V., & Mishchenko, E.F. (1962). The mathematical theory of optimal processes. New York-London. Intersciene Publishers John Wiley&Sons, Inc.

41. Redmond, W. (1994). Diffusion at Sub-National Levels: A Regional Analysis of New Product Growth. Journal of Product Innovation Management, 11(3), 201–212. https://doi.org/10.1111/1540-5885.1130201.

42. Reichardt, T. (2008). Bedürfnisorientierte Marktstrukturanalyse für technische Innovationen: Eine empirische Untersuchung am Beispiel Mobile Commerce, Wiesbaden.

43. Robertson, T. S. (1967). The Process of Innovation and the Diffusion of Innovation. Journal of Marketing, 31(1), 14–19. https://doi.org/10.2307/1249295.

44. Rogers, E. M. (1961). Characteristics of agricultural innovators and other adopter categories, Ohio Agricultural Experiment Station, Research bulletin 882, Wooster.

45. Rogers, E. M. (1969). Communication Research and Rural Development. Canadian Journal of African Studies, 3(1), 216-222/ http://dx.doi.org/10.1080/00083968.1969.10803540.

46. Rogers, E. M. (2003). Diffusion of Innovation. 5. Aufl., New York.

47. Song, I., & Chintagunta, P. (2003). A Micromodel Of New Product Adoption with Heterogeneous and Forward Looking Consumers: Application to the Digital Camera Category. Quantitative Marketing and Economics, 1(4), 371–407. https://doi.org/10.1023/B:QMEC.0000

48. Srinivasan, S., & Mason, C. H. (1986). Nonlinear least squares estimation of new product diffusion models. Marketing Science, 5(2), 169–178. https://doi.org/10.1287/mksc.5.2.169.

49. Steffens, P.R., & Murthy, D.N.P. (1992). A Mathematical Model for New Product Diffusion: The Influence of Innovators and Imitators. Mathematical and Computer Modelling, 16(4), 11-26, https://doi.org/10.1016/0895-7177(92)90031-F.

50. Sultan, F., Farley, J.U., & Lehmann, D.R. (1990). A Meta-Analysis of Applications of Diffusion Models. Journal of Marketing Research, 27(1), 70–77, https://doi.org/10.2307/3172552.

51. Talukdar, D., Sudhir, K., & Ainslie, A. (2002). Investigating New Product Diffusion Across Products and Countries. Marketing Science, 21(1), 97–114. https://doi.org/10.1287/mksc.21.1.97.161.

52. Tanny, S. M., & Derzko, N. A. (1988). Innovators and imitators in innovation diffusion modelling, Journal of Forecasting, 7(4), 225-234, https://doi.org/10.1002/for.3980070403.

53. Taylor, S., & Todd, P.A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144-176. https://doi.org/10.1287/isre.6.2.144.

54. Urban, G. L., Weinberg, B. D., & Hauser, J. R. (1996). Premarket Forecasting of Really-New Products. Journal of Marketing, 60(1), 47–60. https://doi.org/10.2307/1251887.

55. Van Den Bulte, C., & Stremersch, S. (2004). Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test. Marketing Science, 23(4), 530–544, https://doi.org/10.1287/mksc.1040.0054.

56. Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.

57. Wach, K. (2016). Innovative Behaviour of High-Tech Internationalized Firms: Survey Results from Poland. Entrepreneurial Business and Economics Review, 4(3), 153-165. doi: https://doi.org/10.15678/EBER.2016.040311

58. Yurynets, Z., Yurynets, R., & Gutor, Т. (2017).Game theory model for the development of optimal strategy towards innovative products manufacturing at the enterprise. Problems and Perspectives in Management, 15(3), 285-294, https://doi.org/10.21511/ppm.15(

59. Investor Relations, Sony. Retrieved from: https://www.sony.net/SonyInfo/IR/financial/#block1.